
NRL Report 7998

Abstract Types Defined as Classes
of Variables

D.L. PARNAS

Research Group on Operating Systems (1)
Computer Science Department

Technische Hochschule Darmstadt
61 Darmstadt, West Germany

and

Information Systems Staff
Communications Sciences Division

and

JOHN E. SHORE AND DAVID M. WEISS

Information Systems Staff
Communications Sciences Division

April 22, 1976

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

SECURITY ~ ~ *r,,, 00r05 FIChA Il,, R,,,)ed -t BEOR COMLEIN PORM1nvr aa r u

REPORT DOCUMENTATION PAGE _P-FRE INMTUTIFOR

I REPORT NUMBERE~t 2 GOVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

NRL Report 7998
_iE 'r- ; - 5 TYPE OF REPORT & PERIOD COVERED

Interim report on a continuing
ABSTRACT TYPES DEFINED AS CLASSES OF NRL Problem
VARIABLES 6. PERFORMING ORG. REPORT NUMBER

7. AUTHORfs) S8 CONTRACT OR GRANT NUMBER(e)

DI. Parnas, John F. Shore, and David M. Weiss

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASKAREA & WORK UNIT NUMBERS

Nalrw1 Reseoarch I --oratooi MyTPTL Prnloble 12A9.QV
Washington, D.C. 20375

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy April 22, 1976
Navy Electronics Laboratory Center 132 NUMBER OF PAGES
San Diego, Calif. 92152 _ 12

14. MONITORING AGENCY NAME & ADORESS(1f different from Controlling Offlce) 15. SECURITY CLASS. (of this trport)

Unclassifiedl
Naval Electronics Systems Command
Arlington, Virginia 20360 SCLESCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTiON STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary md Identify by block number)

Software Programming languages
Software engineering Abstract data types
Programming

20. ABSTRACT (Continue on revetse aide If necessary end identify by block number)

The concept of type has been used without a precise definition in discussions about pro-
gramming languages for 20 years. Before the concept of user-defined data types was introduced,
a definition was not necessary for discussions of specific programming languages. This report
discusses a definition of type in which the concept of variable is considered primitive and types
are defined as various equivalence classes of variables that may be legally and meaningfully sub-
stituted for one another in different contexts. Abstraction from the differences between two

(Continued)

DD 1JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-66011

i SECURITY CLASSIFICATION OF THIS PAGE (Wen Dota Enfered)

��l

--- 11 _. .11._._-_.' __ 1- .- I- n- P--41

: j.
I...

.L¼IR4ITY CLASSlFICATJON OF Tt4[S PAGE(Whon Data Enteed)

20. Abstract (Continued)
variables is then achieved by allowing the substitution of one variable in an equivalence class for
another within specified contexts such as parameter substitution, assignment, and data sharing.

1l1U UhUL Ui dA iL[165Ua5t VVILUtL OLt ULidataLull Ja.OUltty kuaoC u1l btUC 39±DR -Vl tt5 tVwaul 4i ±3a Vt

group variables into types in ways meaningful to him but must state the conditions under which
members of a group are equivalent. Several kinds of types are proposed for inclusion in such a
language. Some examples are types defined by identical externally visible behavior (equivalent
specification), types whose members differ according to the value of one or more parameters,
and typess wvhse members have identical rsnrpesgntanjrsn

The preceding approach to type definition has a strong effect on the possibilities for code
sharing, data sharing, and parameter passing. New or unusual compiling techniques will probably
be required to exploit these possibilities.

I

ii SECURITY CLASStFICATION OF THIS PAGE(Ifen Date Entered)

-

ABSTRACT TYPES DEFINED AS CLASSES OF VARIABLES

INTRODUCTION

The concept of type has been used without a precise definition in discussions about
programming languages for 20 years. Before the concept of user-defined data types was
introduced, a definition was not necessary for discussions of specific programming languages.
The meaning of the term was implicit in the small list of possible types supported by the
language. There was even enough similarity between different languages so that this form
of definition allowed discussions of languages in general. The need for a widely accepted
definition of type became clear in discussions of languages that allow users to add to the
set of possible types without altering the compiler. In such languages the concept of type
is no longer implicitly defined by the set of built-in types. A consistent language must
be based on a clearer definition of the notion of type than we now have.

PREVIOUS APPROACHES

We have found the following five approaches to a definition of type in the literature
(sometimes implicitly):

* Syntactic. Type is the information that one gives about a variable in a declaration.
If in old languages one could write "VARIABLE X IS INTEGER" and one can now
write "VARIABLE X IS ***," then *** is a type. Such an approach only avoids
the problem. The basic need of a definition appears when one tries to decide what
should go under ***.

* Value Space. A type is defined by a set of possible values. One may therefore
discuss unions, Cartesian products, and other mathematically acceptable topics
[1,2].

* Behavior. A type is defined by a value space and a set of operations on elements
of that space [3].

* Representation. A type is determined by the way that it has been represented in
terms of more primitive types [4,5]. This determination is repeated until one
reaches primitive data types that are usually hardware (or compiler) implemented.

* Representation Plus Behavior. A type is determined by a representation plus the
set of operators that define its behavior; these operators are defined in terms of a
set of procedures operating on the representation [6-8].

We have been unable to use any of these approaches to produce a definition of type
in an "extensible" language that allowed us to achieve both certain practical goals (such as
strong compile-time type checking of arrays with dynamic bounds) as well as the aesthetic

Manuscript submitted March 17, 1976.

1

PARNAS, SHORE, AND WEISS

goal of having a simple language with a clear and simple set of semantic rules. Each simple
set of rules led to the exclusion of cases of practical importance; the inclusion of those
cases invariably resulted in a set of exceptions that made the basic semantics of the lan-
guage hard to understand.

As a result of these experiences we have taken a new approach. We consider the no-
tion of a variable and its permitted contexts within a program as primitive, and we- define
types as equivalence classes of variables, We do not include a precise definition of a vari-
able, since variables have essentially the same meaning in all commonly used programming
languages, and since there is no evidence of any practical difficulty resulting from the lack
of a definition. As a result we feel justified in taking the concept of variable to be primi-
tive and using that concept as a basis of our definition of mode and type. For this purpose
we consider constants and temporary variables for the storage of intermediate results to be
variables as well.

MOTIVATIONS FOR TYPE EXTENSIONS

We begin with a brief discussion of the reasons for including user-defined types, some-
times called type extensions, in a programming language. Including a type definition facil-
ity in a language will not increase the class of functions that can be computed by programs
in the language, nor will it make possible the generation of better machine code than was
possible before. We believe however that type extension can support the following four
goals:

* Abstraction. An abstraction is a concept that can have more than one possible
realization. The power of abstraction, in mathematics as well as in programming,
comes from the fact that by solving a problem in terms of the abstraction one can
solve many problems at once. The user-defined data type is generally an abstraction
from many possible structures of more primitive data elements and many possible
procedure implementations. Languages that allow the definition of abstract data
types support the use of such programming methodologies as "structured program-
ming," "stepwise refinement," and "information hiding" j9-123.

* Redundancy and Compile Time Checking. In defining new types and declaring
variables to be of those types, one is providing additional information about the
intended use of the data, thereby restricting the set of meaningful operations an
the data. In a correct program this information is redundant, but for programs
being developed it allows more checking and error detection by the compiler, It
is widely believed that such redundancy will lead to more reliable programs and
lower program development costs.

* Abbreviation. If a program is written in terms of operations on data types and
structures defined by the user, it can be shorter than an equivalent program written
in terms of data types defined for general purposes. The shorter program is easier
to write, understand, prove correct, modify, etc. The source text requires less stor-
age space. Code sharing can occur if the user-defined data elements and their asso-
ciated operations are suitable for use in more than one program or in more than

2

- - - - - - - - - - -

NRL REPORT 7998

one "module" of a large program. Extensive abbreviation and code sharing in pro-
grams was made possible by the invention of the subroutine. Data abstractions are the
next step.

* Data Portability. Often a programmer is faced with using or producing data defined
according to a data organization not under his control. Sometimes the programmer
must process data independently produced in several systems using different for-
mats. The ability to define data types and write programs in terms of those data
types should help reduce the amount of program rewriting made necessary by the
introduction of new data or new data organizations. In many important applica-
tions the data may be self-describing, so that its characteristics can be completely
determined only at the time of actual processing. Extensible languages should be
helpful in this situation as well.

In our opinion languages currently being discussed have not achieved the foregoing
goals. Current trends seem to favor strongly typed languages that use a representation
approach or representation plus behavior approach to type definition [5,7,81. The defini-
tion of types in terms of representation plus behavior interferes with the goal of abstrac-
tion, because a technique for handling more than one implementation of an abstraction at
a time in one program has not been developed. The desire for compile-time checking in-
terferes with abbreviation and code sharing, because strong type checking tends to prevent
code developed to work with data of one type from use on data of another type, even
when its application is meaningful. One reason APL programs can be so short is the "every-
thing goes" attitude taken toward the types of variables expected by operators. A defini-
tion of type in terms of value spaces interferes with the goal of compile-time checking,
since variables that count pears and variables that count light bulbs have the same value
space. (Because so many distinct properties of objects can be described with the same
value space, it has proven necessary to use the concept of units. We see support for the
definition of the units in which a quantity is expressed as being an obligation of the con-
cept of user-defined types. We also note that units as such are often inadequate for our
purposes. Very different properties, such as length and height of an object, may be mea-
sured in the same units.)

A NEW APPROACH

The extent to which a programming language supports the goals discussed in the pre-
vious section depends almost entirely on the situations in which one variable may be sub-
stituted for another. Abstraction from the differences between two variables is achieved
when one variable may be substituted for the other without making the program illegal or
meaningless. Compile-time type checking prohibits the substitution of one variable for
another in certain contexts.

All of the practical difficulties that we have encountered in our attempts to use the
five approaches to a definition of type previously listed appeared because each definition
placed certain restrictions on the context in which variable substitutions were allowed.
Those restrictions then prevent the achievement of one or more of the four goals outlined.
As a result we have chosen to consider a less restricted definition in which the concept of
variable is considered primitive and types are defined as various equivalence classes of

3

PARNAS, SHORE, AND WEISS

variables that may be legally and meaningfully substituted for one another. To explore
such a definition, we need to introduce the concept of a variable's mode. (The use of the
terms type and mode here is not consistent with that found in the literature, which is it-
self inconsistent in the use of these terms. In particular the use of these terms here is dif-
ferent from the use adopted in Ref. 13.)

THE MODE OF A VARIABLE

When a variable is declared in conventional programming languages, such as FORTRAN,
ALGOL 60, or PASCAL, the compiler is given enough information to determine how the
data referred to by means of the variable is to be represented and which procedures are
allowed to operate on the representation. We refer to all variables that are identical with
respect to data representation and access as being of the same mode. Once the mode of a
variable is determined, the compiler has enough information to produce machine code that
will operate on the machine representation of the variable.

Mode defines an equivalence class on variables. Any value that can be stored in one
variable of a given mode can be stored in another of the same mode. Any program that
operates correctly on a variable of a given mode will operate on any other variable of the
same mode under exactly the same conditions (initial values etc.).

TYPES AS CLASSES OF MODES

Each mode defines a simple class of variables, namely, variables whose substitution
for each other in any context will not result in a compile-time error. We introduce the
concept of type in order to define classes of variables whose substitution for each other is
permitted by the compiler only in some restricted contexts. Since we need never distin-
guish between two variables of the same mode, types can be thought of as classes of modes.

We are unwilling to restrict ourselves to types that consist of a single mode because
of our goals of abstraction and abbreviation. In a practical language it should be possible
to write programs that can be applied to variables of more than one mode. (Generic pro-
cedures are currently often used to solve this problem.) On the other hand the goal of
increased redundancy and type checking forbids allowing the compiler to compile code
whenever a meaningful interpretation can be imagined. Such an approach is often euphe-
mistically called automatic type conversion. Because we have never seen a system of
automatic type conversions that performed all conversions that agreed with our intended
use of the data and refused to perform any others, we favor languages that have no auto-
matic conversions. The alternative to types consisting of a single mode is to define types
as classes of modes and to specify in terms of types the set of permissible operands for
newly defined operators. This allows the programmer who defines a new type to determine
the set of permissible operatorioperand combinations and requires that he define the mean-
ing of expressions involving his type. Additional burdens are thereby placed on the de-
finer of a data type, but the user of that type is relieved from the onerous task of writing
explicit calls on conversion routines in many situations.

4

NRL REPORT 7998

In our view the term abstract data type is properly applied to the preceding concept
of type; that is, a data type deserves the name abstract only if it includes more than one
mode and if one can deal with all members of the mode class without distinguishing among
them.

One can combine modes into types for a variety of reasons, such as to support the
goals of abstraction, abbreviation, and code sharing without sacrificing type che LAXng. I
the following sections we will discuss examples of situations in which modes should be
grouped into types. These examples should not be interpreted as a refinement of the
basic definition. The language user should be able to group modes into types almost arbi-
trarily. The situations we will describe are merely those which we expect to occur most
often. Any language that will not allow us to define types in the situations we describe
is not satisfactory.

TYPES CONSISTING OF MODES WT Tf VWT'rwAT

EXTERNALLY VISIBLE BEHAVIOR (SPEC-TYPES)

For any mode defined by a representation and a set of permissible operators, one can
describe those characteristics that can be observed by operating on the representation using
only the operators provided. This black-box picture of the mode can be termed its speci-
fication [14]. If this specification of the mode contains less information than is contained
in a description of its implementation, other modes also satisfy the specification. As an
example the specification for modes used to implement complex numbers need not define
whether the internal representation is in terms of real and imaainarv narts or in terms of
argument and magnitude.

The set of modes that satisfy a given specification constitute an important class, which
we call a spec-type. Any program that is written to operate on variables of a spec-type
and that can be proven correct without assuming more information about the type than
is given in the specification will be correct for another variable of that type even if the
mode is different. When the mode is changed, recompilation may be needed, but the pro-
gram text need not be changed. Given a procedure with a parameter specified to be of a
given spec-type, it should be possible for the compiler to verify that the parameter is
operated on only as permitted by the type specification. The compiler can then permit
the procedure to be shared by anyone who wishes to call it with a variable whose mode
is a member of the given spec-type.

TYPES CONSISTING OF MODES WITH IDENTICAL
REPRESENTATIONS (REP-TYPES)

It is common to find data with quite different meanings having the same representa-
tion. For example integers and real numbers are often both represented by a single
machine word. A user may choose to represent both a two-dimensional position and a
complex number by a structure with two real elements. A frequent complaint about lan-
guages with strong type checking is that one cannot use the common properties of two
modes. These restrictions have been introduced in part to prevent the writing of programs

5

PARNAS, SHORE, AND WEISS

whose correctness depends on implementation details that are not part of the language
definition. (Such programs could become incorrect if a compiler change is made.} Unfor-
tunately the restrictions extend beyond the protection of implementation details. Many
operations (such as storage management) can be usefully applied (with the same meaning)
to all modes having the same representation. A program may also be useful when applied
to variables of different modes that have common representations even though interpreta-
tion of the effect of that program may be quite different in each case.

For example the same program could calculate distance from origin for a point in two-
dimensional Cartesian space and the magnitude of a complex number whose representation
is in terms of real and imayinarv narts. However nice the aesthetic nronerties of a lan-
guage may be, if it forces users to write duplicate programs or forces the code generated to
be larger than otherwise necessary, the language will have difficulty gaining acceptance by
organizations with strong cost, time, and memory constraints. Under pressure the users of
such a language will resort to the dirtiest of dirty tricks to meet their time and space
constraints.

From these considerations we conclude that a user should be able to declare as a type
a group of modes that have the same representation and to define a set of operations on
variables of fhaf type in terms of thnat representation We call such a type a ran-#i.'n We
do not want a compiler to recognize common representations. Membership in a rep-type
should be declared explicitly in such a way that the compiler can detect undeclared re-
presentation dependence. The decision to have a representation-dependent program should
be explicit, and the points at which representation dependence is introduced should be
easily recognized.

TYPES CONSISTING OF MODES THAT ARE INVOCATIONS OF
fl A fl AA~%r7MTnn 7 '7 nf t tnrl n r'tinTn rrvnrrQxrntf A fl A 'AN mrnvrnnn rnansRhiivElJLJJ nRut M rjE JIsoaiUr I1 iz'NS iPrnvANI-1t r EoS

One of our goals is the achievement of code sharing, that is, the ability to use the
same code to operate on variables of different types. With current computers, compilers,
and macro generators it is easy to write code that can be applied to variables that are
alike except for the value of one or more descriptive parameters. For example the same
code can invert a matrix whether it be 5 by 5 or GO by 60. As the CLU language shows
[7,81, it is also possible to write code that will implement a stack of integers or a stack
of variables of type complex. These are examples of the use of parameterized mode de-
scriptions. Both are descriptions in which certain symbols are designated to be parameters.
Defining values of those parameters completes the mode description. Thus integer array
[M:N], where M and N are parameters, defines the mode integer array [2:31 if M has the
value 2 and N the value 3. Similarly TYP array [M;NI, where TYP is considered to be

a noram.neteer, cnan enerante interger rroah, ro-1 orn -n- tc. Tecls of -11 n--A-. +,+ ano
pcaA~i~.~t~, ~L1I

5
tl~tLaL 7 ILL~t.L .LaJ , 1t0A (L.4U

3
0, . Al- 4W t 0tWO CUt I LIIUt~at LJIIat %,UW

be obtained by assigning values to the parameters of a parameterized mode description
can be considered as a type. Code sharable by all members of this type can then be writ-
ten, because it can refer to the parameters.

An example of a language that does not allow code sharing in such situations is
PASCAL, which excludes even dynamic arrays as they were known in ALGOL 60. There

1Ž-U,

NRL REPORT 7998

have been several proposals to make a special case of such arrays. Rather than recognize
one or two special cases, we choose to allow the user to declare modes to be members of
the same type if they can be generated by assigning values to the parameters of a mode
description. We call this type a param-type.

TVPRE CONRITTING OF MODflF WITTH ROME
COMMON PROPERTIES (VARIANT-TYPES)

A weaker form of spec-types is needed for situations in which a variety of modes do
not have identical specifications but have some common properties that one wants to ex-
ploit. (This example of a type can be regarded as a catchall, since it allows handling of
anything not falling into any of the previous situations.) Consider a personnel records sys-
tem. There may be many different modes for representing employees, because the data
kept for each class of employee may be quite different. However all of these will have a
birth date. An organization may want to invite its employees to a free dinner on their
birthdays and will want a program that goes through the personnel records and produces
a file sorted according to birth date containing only the name, address, and (in Germany)
titles and degrees, so that a proper invitation can be issued a few days before the birthday.
This program should be written so that it ignores (abstracts from) those aspects of the per-
sonnel record that are irrelevant to the program. It should be possible to declare a type
that includes all personnel records and makes them all appear to have only those attributes
needed by this program. The program need not be changed when it is applied to new
modes. It is only necessary to include the new mode in the abstract type for which the
program was written. This type is also defined by a specification, and the operators spec-
ified to be common to all variables of the mode must be implemented for the new type
in accordance with those specifications. We call such a type a variant-type.

MODES BELONGING TO MORE THAN ONE TYPE

An advantage of our basic definition of type is that there are no conceptual difficulties
involved in considering one variable to be of more than one type. That arises whenever one
mode is a member of more than one class of modes. Types may also be declared to be sub-
sets of other types, or a set of types may be combined because of some common property
and considered (for some programs) as a single type.

For example one may have two forms of strings that are members of a spec-type de-
fining the meaningful set of string operations. One of these modes keeps the strings tightly
packed for storage efficiency; the other keeps them in a form more suitable for changes.
For convenience exactly the same set of string operations are defined for both of them, so
that certain programs can be written to operate on variables of either mode (on any vari-
able whose mode is a member of the spec-type) without converting one into the other.
nee representations of these two modes will not be the same, and if a rep-type is declared

for one of the modes, there will be programs that can operate on one but not on the other.
These programs will be shared with other members of the rep-type but not with other mem-
bers of the spec-type. Efficiency requires that we allow such differences to exist; the dic-
tates of structured programming and modularity require that we confine knowledge of those
differences to small parts of the system [9-11].

7

PARNAS, SHORE, AND WEISS

A language that allows a variable to be of more than one type might be regarded as
unstructured (unrestricted}, because it allows one to write a program that will be correct
for one variable of a given type but not for another variable of the same type. It is clear
that abuse of this facility could lead to programs that are hard to understand and main-
tamn. Our position is that representation or machine-dependent programs will be written
whenever cost considerations demand it; it is better to provide a mechanism that allows
the control of such dependency than to force the programmer to use dirty tricks.

THE TIMES AT WHICH CODE SHARING MAY OCCUR

if two variables are members of the same spec-type, they may share the source code
of a program but not necessarily the compiled code. This allows source code to be shared
among versions of the programs [15j. If several members of the spec-type are expected
to be operated on by the same piece of compiled code, then either the code compiled must
contain a branch on the mode of the variable or the procedures required to satisfy the spec-
type's specifications must be passed with the variable at run time. If the program is writ-
ten so that the mode of the variable can be determined at compile time, more efficient
code can be compiled than if the program is left more general (if only the spec-type is
known).

NEED FOR A GENERAL EQUIVALENCE FACILITY

If the concepts in this report are to be used, it will be necessary to have programs in
which one data item appears to be of two different types in two different programs. One
program will operate on a variable as a variable of type "personnel record," and another
will operate on it as a variable of type "officer record." Some part of the system must
be responsible for making sure that the same record is operated on in both cases and that
the changes are kept consistent. This can be achieved by representing both variables wiul
the same data item. This is an equivalencing facility - but one without all of the danger-
ous properties of the FORTRAN EQUIVALENCE statement. In FORTRAN, the users
of a variable declare the EQUIVALENCE. In our proposal, only the program responsible
for implementing the abstract types can make two variables equivalent. Users of the
modes cannot. The responsibility for consistency rests with one implementor rather than
with all possible users of the data.

DESCtIIuON Or ORRMAL PAIIAMETE;RS FOR
PROCEDURES, MACROS, ETC.

In a language based on the concepts discussed it is vital that the description of a for-
mal parameter given with the declaration of a procedure be permitted in terms of types
as well as modes. It is worth remembering that in the ALGOL 60 reference language [3i
formal parameter descriptions, although syntactically similar to variable declarations, were
referred to as specifications and did not always provide as much information as needed in
a declaration. (Implementations of ALGOL 60 often require that the parameter specifi-
cation include information allowed but not required by the reference language.) The

S

NRL REPORT 7998

clear distinction between parameter specifications and variable declarations in ALGOL 60
is often lost because of the syntactic similarity in the two. Allowing user-defined types
makes the distinction vital. A parameter specification may be any kind of type, but a
variable declaration must always determine a mode.

Allowing the full range of possibilities suggested by this report would appear to re-
auire some new or unusual compiling techniques. We view the issues involved in;parameter
bindings to be among the most important and most difficult remaining problems for de-
velopers of languages that allow user-defined data types.

APPLYING THESE CONCEPTS TO DESIGNING A LANGUAGE

Although we feel that the preceding view of types provides a clearer conceptual basis
for a language design than the others that we have considered, we have not yet developed
a language syntax that embodies our concepts. Syntaxes to accommodate some of these
ideas within the context of data-base-management systems have been proposed (as in Ref.
16). We know that the declaration of a mode will resemble languages such as PASCAL
and CLU, but we expect the declaration of a type to look quite different. It must be pos-
sible to define a type by enumerating the member modes (or types) or by making a dec-
laration of the required properties of member modes or by some combination of the two
techniques. For some types a set of operations will exist that must be defined for all
modes that are of that type; the compiler must then check that the necessary operators
are available for each member mode. Since we do not expect to be able to check for cor-
rectness, the compiler is required to check only that an operator of the proper name and
form (parameters etc.) exists. We believe that the syntax for parameterized mode descrip-
tions should resemble the syntax for procedures, which we view as parameterized statements.

ACKNOWLEDGMENTS

The authors are grateful to Mr. Warren Loper of the Naval Electronics Laboratory
Center and Drs. James Miller and John Nestor of Intermetrics, Inc., for many useful dis-
cussions. We are especially grateful to Prof. Dr. Hoffmann of the Technische Hochschule
Darmstadt for constructive suggestions. We also thank the referees for pointing out the
lack of clarity in earlier versions of this report.

The ideas expressed in this report have been stimulated by the authors' involvement
in the Navy's design of a new programming language (CS-4) [13].

REFERENCES

1 I" A fl T in St ured .ga n J. Dahl,
I. U-Lit. nuare, `Notes on Data Structuring," i Structured Programmin, 04. Dahl,

E.W. Dijkstra, and C.A.R. Hoare, Academic Press, 1972.

2. B. Wegbreit, "The Treatment of Data Types in EL 1," Communications of the ACM
17 (No. 5), 251-264 (May 1974).

9

PARNAS, SHORE, AND WEISS

3. P. Naur, editor, "Revised Report on the Algorithmic Language ALGOL 60," Commu-
n,+inai rd 41hA Afl5 CZ ITM i1X t 1'7 il oa-oI,±sl~asw tuu lt ~k U±L 1 f l 'S .l J y £ -j i kua11. £'jtUJj.

4. A. Van Wijngaarden et al., "Report on the Algorithmic Language ALGOL 68,"
Nurmerische Mathematik 14, Feb. 1969.

5. N. Wirth, "The Programming Language PASCAL (revised report)," Berichte der Fach-
gruppe Computer - Wissenschaften, Eidgenossische Technisehe Hochschule, Zurich,
Dec. 1973.
r) F T fl 1 I f lr__~~ ~ A TX V f

. %JtJ.I Ljafl 12. wxlylrhaug, aiU f. Nlygaard, Silmula 67 Conymon Base tanguage,
Norwegian Computing Center, Oslo, Norway, 1968.

7. B. Liskoy and S. Zilles, "Programming with Abstract Data Types," SIGPLAN Notices
9. 50-59 (Apr. 1974).

8. B. Liskov, "A Note on CLU," Computation Structures Group Memo 112, MIT, Pro-
ject MAC, Nov. 1974.

9. E.W. Dijkstra, "Notes on Structured Programming," in Structured Programming, 04
Dahl, E.W. Dijkstra, and C.A.R. Hoare, Academic Press, 1972.

10. D.L. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules,"
Cnmminirntinnc nf fhp A MA I5 Mon 1 9 5 I(f i -1QSMp(ler 1Q79.11

11. N. Wirth, "Program Development by Stepwise Refinement," Communications of the
ACM 14 (No. 4), 221-227 (Apr. 1971).

12. J.M. Aiello, "An Investigation of Current Language Support for the Data Require-
ments of Structured Programming," MAC Technical Memorandum 51, MIT, Project
MAC, Sept. 1974.

±0. %.10 It tnaduade flvejerentce avyanuIIU" kd,'. _L (1d avwlaUit i1U111 1i navtu niva 1eVUiLtU.
Laboratory Center, Code 5200, San Diego, Calif. 92152.

14. D.L. Parnas, "A Technique for Software Module Specification with Examples,"
Communications of the ACM 15 (No. 5), a30-336 (May 1972).

15. D.L. Parnas, "On Methods for Developing Families of Programs," Technical Report,
Forschungsgruppe Betriebssysteme (I), Technische Hochschule Darmstadt, Darmstadt,
West Germany.

16. R. Boyce and D. Chamberlin,"Using a Structured English Query Language as a Data
Definition Facility," IBM Technical Report RJ 1318, IBM Research Laboratory, San
Jose, California, Dec. 1973.

10

